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ABSTRACT 
 
 
 

The purpose of this thesis is to investigate the value-added of the Navy’s 

nowcast/forecast and GFO(GEOSAT Follow On) satellite to the naval antisubmarine 

warfare (ASW) and anti-surface warfare. For the former, the nowcast/forecast versus 

observational fields were used by the WAPP to determine the suggested presets for Mk 

48 variant torpedo.  The metric used to compare the two sets of outputs is the relative 

difference in acoustic coverage area generated by WAPP(Weapon Acoustics Preset 

Program).  Output presets are created for five different scenarios, two anti-surface 

warfare scenarios and three ASW scenarios, in each of two regions: the East China Sea 

and South China Sea.  Analysis of the output reveals that POM(Princeton Ocean Model)  

outperforms MODAS(Modular Ocean Data Assimilation System)in all tactic scenarios. 

For the latter, the MODAS (T, S) profiles were used by the WAPP to determine 

suggested presets for MK 48 variant torpedo. The only difference in the MODAS fields 

was the altimeter used to initialize the respective MODAS fields.  The same metrics used 

in the nowcast/forecast case were used to generate and compare the acoustic coverages. 

Analysis of the output reveals that, in most situations, WAPP output is not very sensitive 

to the difference in altimeter orbit. 
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1 

I. INTRODUCTION 

A. BACKGROUND  
The outcome of a battlefield engagement is often determined by the advantages 

and disadvantages held by each adversary.  On the modern battlefield, the possessor of 

the best technology often has the upper hand, but only if that advanced technology is used 

properly and efficiently.  In order to exploit this advantage and optimize the effectiveness 

of high technology sensor and weapon systems, it is essential to understand the impact on 

them by the environment (Mancini, 2004).   

Understanding the ocean environment is imperative and directly coupled to the 

successful performance of ASW sensors and subsequent employment of an ASW weapon 

system.  In order to optimize the performance of ASW sensors and weapons systems, it is 

crucial to gain an understanding of the acoustic wave propagation in the ocean.  Having 

an accurate depiction of the ocean environment is therefore directly related to gaining a 

better understanding of the acoustic wave propagation. 

How acoustic waves propagate from one location to another under water is 

determined by many factors, some of which are described by the sound speed profile 

(SSP).  If the environmental properties of temperature and salinity are known over the 

entire depth range, the SSP can be compiled by using them in an empirical formula to 

calculate the expected sound speed in a vertical column of water.  Two approaches are 

used to increase the accuracy of ocean environmental depiction: (1) ocean 

nowcast/forecast systems, and (2) satellite data assimilation.  

The U.S. Navy has developed the ocean nowcast/forecast systems to determine or 

predict representative SSP. The nowcast system is called Modular Ocean Data 

Assimilation System (MODAS), which is built on the base of the optimal interpolation. 

The forecast system is called the Navy Coastal Ocean Model (NCOM), which is built on 

the base of the Princeton Ocean Model (POM).  MODAS uses climatology as the initial 

guess and assimilates satellite and in-situ measurements such as altimetry, conductivity-

temperature-depth (CTD), expendable bathythermographs (XBT), and ARGO casts. 

NCOM forecasts the ocean environment using observational data such as temperature, 
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salinity, and velocity.  The capability of MODAS and POM to represent ocean 

environment (SSP through T, S profiles) was verified using the CTD data collected from 

the South China Sea Monsoon Experiment (SCSMEX) (Chu et al., 2001, 2004). 

However, the value-added of the nowcast/forecast system on the Naval ASW has not 

been investigated. 

The satellites use radiometers to measure the thermal radiation emitted by the sea 

surface (from which sea surface temperature is derived) and radar altimeters to measure 

sea surface height (SSH).  The satellite data assimilation of SSH into MODAS was 

previously studied by Perry (2003) and Mancini (2004).  Perry compared the acoustic 

coverage of the Generalized Digital Environmental Model (GDEM) and MODAS, with 

SSH data assimilation, and Perry found that MODAS provided more realistic acoustic 

coverage than GDEM.  Mancini compared the acoustic coverage of MODAS, without 

SSH data assimilation, and MODAS, with SSH data assimilation.  Mancini found that 

MODAS, with SSH assimilation, provided more realistic acoustic coverage than 

MODAS, without SSH data assimilation.  However, value-added of the Navy’s Geo-

Satellite Follow-up (GFO) on the Naval ASW has not been studied.   

 

B. PURPOSE 
MODAS, with SSH data assimilation, gives a better depiction of the ocean 

environment.  Altimeters that have different exact overhead repeat period will have 

different temporal and spatial resolutions.  An altimeter’s capability to resolve mesoscale 

features in the ocean is directly relate to the altimeters exact overhead repeat period. 

MODAS fields derived from an altimeter with an exact overhead repeat pattern designed 

to detect mesocale features should be different from MODAS fields derived from an 

altimeter that is not designed to detect mesocale features, especially in regions of high 

mesoscale variability.  Large differences in the MODAS fields are related to different 

depictions of the undersea environment.  The differences in the depiction of undersea 

environment may then change the outcome of a tactical engagement. 

This thesis tries to answer the following questions: (1) What is the impact of the 

nowcast/forecast ocean models on the Naval ASW? (2) What is the difference of the  
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impact between nowcast and forecast systems? What is the impact of the Navy’s satellite 

(GFO) on the Naval ASW? To answer these questions, the Weapon Acoustic Preset 

Program (WAPP) for the Mk 48 torpedo is used as the yardstick. 

These questions are answered through studying the sensitivity of an ASW weapon 

system of a naval ASW system, specifically the Mk 48 torpedo WAPP, to ocean 

nowcast/forecast systems and to satellite altimeter orbit.  The sensitivity analysis is 

conducted by examining the relative difference (RD) in the output of WAPP when two 

different SSP input fields.  The only difference is how to establish these SSP fields such 

as one from the nowcast system and other from the forecast system (nowcast/forecast 

effect), or one from MODAS using TOPEX/POSEIDON (TPX) altimetry data and the 

other from MODAS using GFO altimetry data. The parameters in WAPP are held 

constant; therefore, any differences in the output were attributed to differences in the 

input. 
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II. AREA OF INTEREST 

The two areas below (Figure 1) are selected for analysis because of the high 

mesocale variability (Figure 2), tactical significance, and the availability of hydrographic 

data in the South China Sea used to evaluate both MODAS and POM with South China 

Sea Monsoon Experiment (SCSMEX) data (Chu et al., 2001, 2004).  The northern box is 

hereby referred to as the East China Sea (ECS) and is bound by N, N, 12 E, and 

E. The southern box is hereby referred to as the South China Sea (SCS) and is bound 

by 19 N, N, 11 E, and 12 E. 
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Figure 1.   AOI for data analysis. 

 

Data analysis was conducted in the ECS and SCS during the winter and summer 

of 2001.  Six days (5, 10, 15, 20 25 and 30) and two months (JAN 2001 and JUL 2001) 

were selected for analysis in each box.  A total of 24 cases (two areas of interest, two 

months, and six days in each month) were analyzed. 
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Figure 2.   Composite of shipboard acoustic Doppler current profile (ADCP) during 

1991-2001 in the vicinity of Taiwan.  The left and right panel depict the complex 
subsurface structure at 30 and 100 meters, respectively (from Laing et al., 2002) 

 

SCSMEX was a multi-national experiment in the SCS which studied the water 

and energy cycle of the Asian monsoon cycle (Chu et al., 2001).  SCSMEX provided a 

unique opportunity to evaluate both the Princeton Ocean Model (POM) and MODAS.  

SCSMEX was conducted in the SCS from April through June 1998.  During SCSMEX, 

the hydrographic data set included over 1700 CTD (Figure 3) and mooring stations (Chu 

et al., 2001).   
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Figure 3.   SCSMEX data has more than 1700 CTD observations.  SCSMEX data 

was used to evaluate both POM and MODAS (from Chu et al., 2001).   

7 
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III. SATELLITE ORBIT ANALYSIS 

GFO and TPX satellites have different exact overhead repeat patterns; therefore, 

GFO and TPX have different temporal and spatial resolutions.  Orbit analysis was 

conducted in the ECS and SCS during the winter and summer of 2001 for both GFO and 

TPX satellites because of the high mesocale variability and the availability of 

hydrographic data in the ECS and SCS to evaluate both MODAS and POM performance. 

Since GFO has smaller horizontal resolution, it is better at detecting mesocale 

features than TPX.  The greatest difference in the MODAS fields generated by GFO and 

TPX will be in areas with the high mesoscale variability.  Jiang et al. (1996) showed that 

spatially dense samples are preferred to temporal frequency samples in resolving 

mesoscale features in their simulated altimetry experiment for GEOSAT and TPX 

(Figure 4). 

 
Figure 4.   Resolution of mesoscale features such as the Western Boundary Currents 

and eddies identified from (a) GEOSAT , and (b) TPX. It is noted that GEOSAT 
has better resolution than TPX (from Jiang et. al., 1996).   

 
A.   GFO AND TPX ORBITS 

The US Navy launched the GFO satellite in February 1998 from Vandenberg Air 

Force Base.  GFO has an exact overhead repeat (+/- 1 kilometer) of 17 days with an orbit 

of 800 km, 108 degree inclination, 0.001 eccentricity, and 100-minute period..  The US 
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Navy launched GFO to resolve mesoscale features.  GFO is capable of tracking the 

movement of El Nino and La Nina events across the Pacific and resolving eddies and 

western boundary currents.   

NASA launched the TPX satellite on August 10, 1992 for a three-year mission 

from Kourou, French Guiana.  TPX has an exact overhead repeat (+/- 1 kilometer) of 10 

days with an orbit of 1336 km, circular, and 66-degree inclination.  TPX was initially 

launched with 3-year mission that was extendable to six years.  TPX ended up being in 

orbit for 12 years.  JASON-1 was launched in 2001 to replace TPX.  JASON-1 shadowed 

TPX and seamlessly replaced the TPX satellite altimeter.   

GFO provides a better spatial resolution than TPX because GFO has a longer 

exact overhead repeat than TPX (Figure 5).  Conversely, TPX provides a better temporal 

resolution than GFO because TPX has a shorter exact overhead repeat time than TPX.  In 

fact, TPX completes three exact overhead repeat cycles during Julian dates 001-030 of 

2001, and GFO completes approximately 1.76 exact overhead repeat cycles during Julian 

dates 001-030 of 2001. 

 
Figure 5.   Equator Crossings GFO vs TPX. The blue orbital tracks on the top panel 

depict GFO orbit for Julian dates 001-030 in 2001, and The black orbital tracks on 
the bottom panel depict TPX orbit for Julian dates 001-030 in 2001. GFO has 

better spatial resolution, and TPX has better temporal resolution. 
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B.   ORBIT ANALYSIS IN THE ECS AND SCS IN JANUARY 2001 
Figures 6-8 depict the orbit tracks for GFO, TPX, and combined GFO and TPX 

coverage for ECS and SCS during Julian dates 001-030 in 2001.  GFO clearly provides 

better spatial resolution than TPX because GFO has a spatially dense coverage than TPX 

for the same time period, as depicted in Figures 5 and 8. 

 
Figure 6.   GFO orbital coverage of the ECS and SCS for Julian dates 001-030 in 

2001. 
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Figure 7.   TPX orbital coverage of the ECS and SCS for Julian dates 001-030 in 

2001. 

 
 

Figure 8.   Combined GFO (Blue) and TPX (Black) orbital coverage of the ECS and 
SCS for Julian dates 001-030 in 2001.   
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IV.   NAVY’S OCEAN NOWCAST/FORECAST SYSTEMS 

A. MODAS 
MODAS is the US Navy’s premier dynamic climatology tool.  MODAS operates 

in both a static and dynamic mode.  In static mode, MODAS generates a bi-monthly, 

gridded climatology of temperature and salinity (Fox et al., 2002), which is similar to 

NOAA’s World Ocean Atlas (WOA) climatology and the US Navy’s Generalized Digital 

Environmental Model (GDEM).  In the dynamic mode, MODAS provides the capability 

of modifying the historical climatology with remotely sensed SSH and SST, 

conductivity-temperature-depth (CTD), expendable bathythermograph (XBT), and air 

dropped expendable bathythermograph (AXBT) temperature and salinity profiles.  

MODAS can assimilate real-time observations and produce an “adjusted” climatology 

that more closely represents the actual ocean conditions.  The dynamic climatology then 

provides the end user with nowcast depiction of the ocean’s environment (Fox et al., 

2002). 

MODAS resolution ranges from ½ degree to 1/8 degree in gridded output.  Since 

MODAS is comprised of temperature and salinity profiles in the above resolutions, the 

Sound Speed Profile for each temperature and salinity pair for each grid point can be 

calculated empirically, so MODAS provides a three dimensional output of temperature, 

salinity, and SSP (Fox et al., 2002).  

Dynamic MODAS assimilates in situ measurements of the temperature and 

salinity by method known as Optimum Interpolation techniques (Fox et al. 2002).  OI is a 

technique used for combining a first guess field and measured data by using a model of 

how nearby data are correlated.  The first guess fields used by MODAS for the OI 

calculations are the previous day’s field for SST and a large-scale weighted average of 35 

days of altimetry for SSH.  The static climatology is used for the SST first guess.  

Therefore, synthetic temperature profiles are generated by projecting these fields 

downward in the water column.  The synthetic temperature profiles are projected to a 

depth of 1500 m utilizing an empirical relationships of the historical data which relates 

both SST and SSH to the subsurface temperature. 



Similarly, OI is utilized in the salinity analysis, in situ salinity measurements can 

then be combined using OI to produce the final salinity analysis.  The MODAS 

methodology is outlined in Figure 9.  The final temperature and salinity analysis are what 

MODAS uses to produce the other derived fields, such as sound speed. 

 

 F i g u r e  9 .    MODAS process flow. (from Mancini, .794.)  B .  EVALUATION OF MODAS USING SCSMEX DATA Both observational and climatology where used in the verification of the value added of MODAS (Chu et al., .794).  The observational data were used as the benchmark t o  d e t e r m ine the error stat i s t i c s  f o r  M O D A S  a n d  c l i m atology data.  MODAS has added v a l u e  i f  the difference between MODAS and observational data is smaller than the d i f f e r e n c e  b etween climatological and observational data (Chu et al., .794). MODAS, climatological, and observat i o n a l  d a t a  a r e  r e p r e s e n t e d  b y  ( t e m p e r a t u r e , salinity).  The difference in  b e t w e e n  M O D A S  and observational data is represented by   , , , ( , , ) ( , , ) ( , , m i j m i j o i j)xy z t x y z t x y z t ( 1 )   T h e  d i f f e r e n c e  i n  b e t w e e n  c l i m atology and observational data is , , , ( , , ) ( , , ) ( , , c i j c i j o i j)xy z t x y z t x y z t ( 2 )  14 



The bias, mean-square–error (MSE), and root-mean-square-error (RMSE) 

between  MODAS and observation are represented by 
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and between  the climatology and observation are represented by 
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where N is the total number of horizontal points. To measure the model skill, we may 

compute the reduction of MSE over the climatological nowcast (Murphy 1988; Chu et al. 

2001), 

 MSE( , )SS 1
MSE( , )

m o
c o

= − , (9) 

which is called the skill score. SS is positive (negative) when the accuracy of the nowcast 

is greater (less) than the accuracy of the reference nowcast (climatology). Moreover, SS = 

1 when MSE(m,o) = 0 (perfect nowcast) and SS = 0 when MSE(m,o)= MSE(c,o). To 

compute MSE(c, o), we interpolate the GDEM climatological monthly temperature and 

salinity data into the observational points (xi, yj, z, t). 

15 

Chu et al. (2004) show that  MODAS has the capability to provide reasonably 

good temperature and salinity nowcast fields. The errors have a Gaussian-type 

distribution with mean temperature nearly zero and mean salinity of -0.2 ppt.  The 

standard deviations of temperature and salinity errors are 0.98oC and 0.22 ppt, 

respectively. The skill score of the temperature nowcast is positive, except at depth 
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between 1750 and 2250 m. The skill score of the salinity nowcast is less than that of the 

temperature nowcast, especially at depth between 300 and 400, where the skill score is 

negative (Figure 11). 

Thermocline and halocline identified from the MODAS temperature and salinity 

fields are weaker than those based on SCSMEX data. The maximum discrepancy 

between the two is in the thermocline and halocline. The thermocline depth estimated 

from the MODAS temperature field is 10-40 m shallower than that from the SCSMEX 

data. The vertical temperature gradient across the thermocline computed from the 

MODAS field is around 0.14oC/m, weaker than that calculated from the SCSMEX data 

(0.19o-0.27oC/m). The thermocline thickness computed from the MODAS field has less 

temporal variation than that calculated from the SCSMEX data (40-100 m). The halocline 

depth estimated from the MODAS salinity field is always deeper than that from the 

SCSMEX data. Its thickness computed from the MODAS field varies slowly around 30 

m, which is generally thinner than that calculated from the SCSMEX data (28-46 m). 

Using the SCSMEX observational data,  the MODAS has  better capability  in 

‘nowcasting’ temperature than ‘nowcasting’ salinity (Figure 10) evaluation of MODAS 

using SCSMEX demonstrates that MODAS provides reasonable ‘nowcast’ temperature 

and salinity field when compared to climatology (Chu et al., 2004).  Chu et al. 2004, 

found that MODAS out performed climatology in temperature in depths less than 1750 

meters (Figure 11) and that MODAS generally under predicted salinity fields in all 

depths. 



 
Figure 10.   Scatter diagrams of (a) MODAS versus observational temperature, (b) 

MODAS versus observational salinity, (c) GDEM (climatology) versus 
observational temperature , (d) GDEM(climatology) versus observational salinity.  

(from Chu et al., 2004).   
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Figure 11.   The RMSE between MODAS and observational data (solid) and between 

GDEM (climatology) and observational data (dashed): (a) temperature (deg C), 
and (b) salinity (ppt) (from Chu et al., 2004).   

 
C. POM  

POM is a general three dimensional gridded model that is time-dependent and 

utilizes primitive equations to model general circulation with realistic topography and a 

free surface (Chu et al., 2001, Mellor, 1998).  POM was specifically developed to model 

nonlinear processes and mesocale eddy phenomena.  POM has been proven to be an 

effective tool in investigating seasonal variability, multi-eddy dynamics, typhoon forcing, 

and synoptic forcing in the SCS.   
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D. EVALUATION OF POM USING SCSMEX DATA 
Evaluation of the POM performance in the SCS was conducted by utilizing 

SCSMEX data.  The evaluation of POM using SCSMEX data showed that POM has the 

capability to reasonably predict temperature fields and circulation patterns, but the POM 

was not skillful in predicting the salinity fields.  However, when data was assimilated into 

the POM and allowed to run for one month, the hindcast capability of the POM increased 

for both the temperature and salinity fields.  Data assimilation (Figure 12) into the POM 

therefore increased the POM’s skill in hindcast capabilities (Chu et al., 2001). 

 
Figure 12.   POM with data assimilation.  The RMSE between POM (m) and 

SCSMEX observations (o) and between climo (c) and SCSMEX observations (o) 
for temperature and salinity during May and June 98. (from Chu et. al., 2001) 
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V. WEAPON ACOUSTIC PRESET PROGRAM FOR ASW 

A. WAPP 

1.   Background 

WAPP provides the US Submarine Fleet with an on-board automated tool for 

generating the MK 48 and MK 48 ADCAP acoustic presets and visualizing the acoustic 

coverage for a given torpedo scenario.  WAPP is based on Graphic User Interface (GUI) 

that allows the user to enter environmental, tactical, target, and weapon data.  Once the 

user identifies the above presets for the weapon, WAPP generates a ranked list-set of 

search depth, search angle, pitch angle, laminar distance, ray trace, and an acoustic 

coverage map.  The output from the WAPP enables the war-fighter to assess the tactical 

environment, acoustic environment, weapon presets, and current Target Motion Analysis 

(TMA). 

The MK 48 and MK 48 ADCAP torpedoes utilize High-frequency sonar for 

search, detection, and homing on a given target.  Accurate oceanographic environmental 

data is needed to correctly predict the acoustic coverage of the MK48 and MK 48 

ADCAP torpedoes.  The Applied Physics Laboratory and University Washington 

Technical Report 9407 (APL-UW TR 9407) High-Frequency Ocean Environmental 

Acoustic Models Handbook was used in programming the WAPP.  APL-UW TR 9407 is 

the bible of High-Frequency modeling.  High-Frequency SONAR models must 

incorporate volumetric sound scattering, sea state, shipping noise, biological ambient 

noise, and bottom loss to predict acoustic propagation accurately.  The affect on acoustic 

propagation of above oceanographic parameters varies with frequency, so WAPP 

neglects the Low-Frequency and Medium-Frequency propagation effects and solely 

predicts the High-Frequency acoustic coverage for the MK 48 and MK 48 ADCAP 

torpedoes.   

2.   WAPP Ocean Environment Input  

Ocean environment data is ingested by the WAPP from various operational 

oceanographic data sources, oceanographic models, and direct operator inputs.  Base on 

the Date-Time-Group (DTG) and position of the submarine, WAPP extracts the projected 
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environment from the various data sources.  Below Table 1 provides a summary of the 

data sources used by WAPP.  

 

WAPP Environment Data Sources 

Data Source Parameter 

DBDB-V v4.2 (Level 2) 

 

(Digital Bathymetric Data Base-Variable )  

Bottom Depth 

GDEM-V v3.0 (Generalized Digital Environment Model) 

Sound Speed Profile 

HIE (SN v5.3) (Historical Ice Edge ) 

Open Water/MIZ/Ice Cover (Under Ice warfare) 

SMGC v2.0 (Surface Marine Gridded Climatology)  

Historic Wind Speed (Sea State) 

BST v1.0 Bottom Sediment Type 

VSS v6.3 Volume Scattering Strength Profile 

Table 1. WAPP Environment Data Sources 
 

The Environmental Data Entry Module (EDE), Figure 13, is the (GUI) that is 

used by the operator to enter environmental parameters.  The EDE is the interface for 

entry and examination of the Sound Speed Profile (SSP) and entry of Sea State and 

Bottom Type. 



 
Figure 13.   EDE GUI 

 
a.   WAPP EDE Surface Conditions 

 

 
Figure 14.   WAPP EDE Sea Surface input 

 
WMO Sea State Wind Speed (kts) Significant Wave Height 

(m) 
0 1.5 0 
1 5 0.17  
2 8.5 0.46 
3 13.5 0.91 
4 19 1.8 
5 24.5 3.2 
6 37.5 5.0 
7 51.5 7.6 
8 59.5 11.4 
9 >64 >13.7 

Table 2. WMO Convention (Sea State/Wind Speed/ Wave Height) 
 

23 



The sea surface condition is input directly by the operator into the EDE 

(Figure 14), or the wind speed and wave height is calculated using the World 

Metrological Organization convention (Table 2). 

The sea surface condition impacts the WAPP predictions because acoustic 

energy suffers forward reflection loss after interacting with the surface (NUWC 2005).  

Additionally, the active SONAR pulse are reflected by the surface bubbles that increase 

with sea state; consequently reverberation increases with sea state and target detection 

decreases with sea state.    

b.  WAPP EDE Sea Bottom Conditions 

 

 
Figure 15.   EDE Sea Bottom Condition 

 

The sea bottom entry (Figure 15) consists of the SSP depth and bottom 

type.  The bottom depth is directly extracted from the SSP.  The SSP in use determines 

the depth.  The bottom type button provides the operator the selection of the clay, mud, 

sand, gravel, and rock.  The bottom is characterized by the upper 10 cm of the bottom for 

High-Frequency sonar. The Bottom Sediment Type (BST) is undergoing OAML 

certification.  Once the BST database is OAML certified, the bottom type will 

automatically update in WAPP.  Clay and mud bottom have the highest sound 

attenuation, and the rock bottom has the highest reflection.   

c.   WAPP EDE Water Column and Sound Speed Profile Display 
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Figure 16.   Water Column Table 
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WAPP gen  table (Figure 16) in the 

EDE with dep

 

 

The Acoustics Presets Module (Figure 17) is the GUI that allows the operator to 

set MK

type, and ballistic parameters. 

erates a water column characteristics

th (ft or meters), temperature (degrees Celsius and Fahrenheit), volume 

scattering strength (dB), and salinity (ppt).  WAPP uses an empirical formula in 

calculating the SSP given two of the three parameters (Temperature, Salinity, or SSP). 

3.  WAPP Acoustic Coverage Prediction 

 
Figure 17.   Acoustic Presets Module 

 48 tactical presets.  The operators identifies tactics, target type (Surface or 

Submarine), Search Depth, Pitch Angle, search ceiling and floor, Doppler mode, ping 

interval, and search mode.  Additionally, the operator can refine the Depth Zone of 

Interest (DZ), acoustic target strength (NTS), acoustic radiated noise of the target (NZE), 

and the anticipated target Doppler (Dead in Water, Low, High).  Base on the variant of 

the MK 48 selected by the operator and other ballistic parameters, WAPP displays  the 

ranked list-set calculated with the given environmental inputs, acoustic presets, target 
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e inputs in the E ou stic coverage map 

graphic

nput parameters have been selected in 

the above described GUIs.  The process is outlined in Figure 19 (NUWC, 2005, Mancini, 

2004). 

combination is best for the given scenario. 

 
Figure 18.   WAPP Acoustic Coverage Map 

WAPP generates a graphical display (Figure 18) of the acoustic coverage base on 

th DE and Ac stic Preset Module.  The acou

ally displays the ray trace, search ceiling and floor, laminar distance, and signal 

excess. 

4.   WAPP Preset Process 

The WAPP preset process begins once all i

 First, valid search depth (SD) and search angle (SA) combinations are computed 

by utilizing a search angle selection algorithm to identify the optimal pitch angle for each 

search depth.  Second, in series of time steps, the program traces a fan of rays that define 

the torpedo beam pattern for each resulting SD/SA combination (NUWC, 2005).  The 

signal excess computation is mapped and gridded to the search region at each time step 

The signal excess map is used to depicts the area coverage (AC)of the search region with 

signal excess greater than 0 dB (Figure 18, white blocks) and 4 db (Figure 18, magenta 

blocks).  The laminar distance (Figure 18, blue line), signal excess ‘center of mass’, is 

also depicted in the signal excess map.  Third, WAPP then ranks the SD/SA 

combinations based on tactical guidance for the weapon and given tactical scenario.  

Finally, WAPP generates a recommendation based on the ranked list which preset 
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VI. SENSITIVITY OF WAPP TO OCEAN NOWCAST AND 
FORECAST SYSTEMS 

A. WAPP OUTPUT 

Figure 20 outlines the flow chart for the WAPP sensitivity analysis for SCSMEX 

MODAS and SCSMEX POM datasets.  First, the SCSMEX MODAS and SCSMEX 

POM temperature and salinity fields were fed into WAPP.  WAPP then calculates the 

sound speed from the respective temperature and salinity grid point pairs from the 

respective model.  The default values in WAPP for volume scattering strength and 

surface and bottom roughness/reflectivity were used for each tactical scenario.  Five 

different tactical scenarios were selected.  The tactical scenarios are selected using the 

Acoustic Preset GUI (Figure 17).  The five tactical scenario selected were high Doppler 

anti surface warfare (HD ASUW), low Doppler anti surface warfare (LD ASUW), low 

Doppler shallow anti submarine warfare (LD shallow ASW), high Doppler shallow anti 

submarine warfare (HD deep ASW), and low Doppler shallow anti submarine warfare 

(LD deep ASW).  Shallow ASW is defined as maximum target depth of 213 meters, and 

deep ASW is define as maximum target depth of 396 meters (NUWC, 2005).  

Second, WAPP outputs a ranked list-set of different SD/SA combination and 

acoustic coverage generated for the aforementioned tactical scenario for the respective 

MODAS and POM temperature and salinity fields.  Third, a configuration management 

program which included a statistical software package was employed to compare the 

generated list set.  Any differences in the output were attributed to differences in the input 

(NUWC, 2005).  
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Figure 20.   Flow chart of the sensitivity study of the model (POM and MODAS, 

respectively), temperature and salinity datasets, versus SCSMEX observational 
datasets, temperature and salinity datasets.  The SCSMEX evaluation datasets of 
Models (POM and MODAS, respectively) versus Observations are ingested into 

WAPP to generate two sets (POM vs Obs, and MODAS vs OBS) of weapon 
acoustic preset (Acoustic Coverage). Computing the relative difference between 

the two acoustic coverages gives the sensitivity of the FORECAST and 
NOWCAST models (POM and MODAS, respectively). 

 

Finally, the relative difference was calculated using a statistical package, which 

produced absolute values of the relative differences (RD) in area coverage (AC) for the 

identical SD/SA combination generated by WAPP,  

 
AC AC

RD
AC
m

m

−
= o  (10) 

and 

 
AC AC

RD
AC
p

p

−
= o  (11) 

Here, the subscripts m denotes MODAS, p denotes POM and o denotes 

observation.(Mancini, 2004)   

Acoustic 
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WAPP generated SD/SA combinations that were the same and some that were 

different.  The SD/SA combinations that were the same but had a different acoustic 

coverage were attributed to differences in the oceans environment (NUWC, 2005).  The 

SD/SA combinations that were different and had different acoustic coverage were 

attributed to differences in torpedo target motion analysis (TMA) and ballistics.   

A histogram of RD displays the number of same SD/SA combinations with area 

coverage relative differences in specified ranges, or bins.  The probabilities of RD being 

greater than 0.1 and 0.15  

 1 2Pr ob (RD 0.1),   Pr ob (RD 0.15)µ µ= > = > , 

are used for the determination of the sensitivity (Mancini, 2004). 

Figures 21 and 22 below depict the distribution of the RD for the HD Deep ASW 

scenario for both POM and MODAS.  The WAPP output for MODAS in the HD Deep 

ASW has a mean RD of 11.3, a standard deviation of 4.88, probability of RD>0.10 is 

43.75 percent, and probability of RD>0.20 is 3.25 percent.  The WAPP output for POM 

in the HD Deep ASW has a mean RD of 8.98, a standard deviation of 2.95, probability of 

RD>0.10 is 6 percent, and probability of RD>0.20 is 0.25 percent.  Table 3 below 

summarizes the general statistics for all 10 tactical scenarios.   
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Figure 21.   Wapp output for the relative difference between MODAS and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 11.3, standard deviation is 4.88, 
Prob (RD> 0.10) is 43.75%, and Prob (RD>0.15) is 3.25. 

 

32 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 

Figure 22.   Wapp output for the relative difference between POM and SCSMEX 
(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
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Figures 23 an or MODAS 

and P

 

d 24 also provide a depiction of the probability curves f

OM, respectively.  The probability curves for both MODAS and POM 

demonstrated the RD is greatest in the ASUW scenarios.  The probability curves also 

demonstrate that probability of the RD>10 for MODAS is greater than POM.  For 

example, the probability of the RD>10 for POM for the three ASW tactical scenarios is 

less than 10 percent; on the other hand, the probability of the RD>10 for MODAS for the 

three ASW tactical scenarios is greater than 10 percent. 

 

 
Figure 23.   MODAS RD for 5 Tactical Scenarios 



 
Figure 24.   POM RD for 5 Tactical Scenarios 

 

The mean RD probability curves for MODAS and POM have the same general 

shape (Figure 25).  The mean RD for POM is less than the MODAS mean RD for all 

scenarios (Table 3).  The difference for mean RD for the three ASW scenarios for POM 

is generally 2% less than the MODAS mean RD.  The difference for the mean RD for the 

three ASUW scenarios for POM is generally 5% less than the MODAS mean RD.  POM 

therefore adds more value to the ASW weapons system than MODAS, as summarized in 

Table 3. 
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Figure 25.   MODAS and POM Mean RD 

 
Scenario Prob 

(RD>0.1) 
(%) 

Prob 
(RD>0.15) 
(%) 

Mean RD Std Dev 

MODAS HD Deep ASW 43.75 3.25 11.3 4.88 

POM HD Deep ASW 6 0.25 8.98 2.95 

MODAS LD Deep ASW 23.75 1.5 9.66 4.41 

POM LD Deep ASW 3 0.75 7.59 3.56 

MODAS LD Shallow ASW 25.75 3 10.04 4.76 

POM LD Shallow ASW 3.25 1 7.58 3.62 

MODAS HD ASUW 81 71 19.83 7.89 

POM HD ASUW 54 21.21 12.73 5.79 

MODAS LD ASUW 73.5 65.25 18.04 7.76 

POM LD ASUW 55 13.25 12.08 5.51 
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Table 3. Statistics summary of WAPP output for all tactical scenarios for MODAS and 
POM vs. Observations.  For any given tactical scenario, POM (bold) has a smaller 

RD than MODAS. 
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VII. SENSITIVITY OF WAPP TO SATELLITE ORBIT  

Figure 26 outlines the flow chart for the WAPP sensitivity analysis for MODAS-

GFO and MODAS-TPX datasets.  MODAS fields initialized independently with GFO 

altimetry and TPX sea surface height (SSH) data were compared.  The only difference 

between the MODAS field was the altimetry data.  Once again, it is assumed that 

MODAS fields initialized by GFO (MODAS-GFO) will be more accurate than MODAS 

fields initialized by TPX (MODAS-TPX).  The MODAS-GFO and MODAS-TPX fields 

were ingested into WAPP to examine the sensitivity of the USW weapon system.  The 

MODAS-GFO fields were used as the benchmark to determine the error statistics for 

MODAS-TPX.  The chief aim of this study is to identify the WAPP sensitivity to 

altimeter orbit.  If there is a large relative difference between MODAS-GFO and 

MODAS-TPX fields in WAPP, WAPP is sensitive to altimeter orbit. 

 

37 

 
Figure 26.   Flow chart of the sensitivity study of WAPP to TPX and GFO Sea Surface 

Height (SSH).   
 
A. MODAS INPUT DIFFERENCE 

MODAS-GFO and MODAS-TPX data are represented by ψ (temperature, 

salinity, sound speed (SS)).  The difference inψ  between MODAS-TPX and MODAS-

GFO data is: 

 , , ,( , , ) ( , , ) ( , , )m i j mt i j mg i jx y z t x y z t x y z tψ ψ ψ∆ = −  (12) 

The bias, mean-square–error (MSE), and root-mean-square-error (RMSE) for MODAS, 
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(SSH) 

Acoustic 
Coverage 
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Diff. Acoustic 
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WAPP 



 ,
1( , ) ( , , )m i j

i j

BIAS mt mg x y z t
N

ψ= ∆∑∑  (13) 

 2
,

1( , ) [ ( , , )]m i j
i j

MSE mt mg x y z t
N

ψ= ∆∑∑  (14) 

 ( , ) ( , )   RMSE mt mg MSE mt mg=  (15) 

where, N is the total number of horizontal points (Chu et al., 2004). 

A total of 24 cases were analyzed.  A case is comprised of an AOI (ECS or SCS), 

month (JAN or JUL), and day (5, 10, 15, 20, 25, or 30).  Each was individually analyzed.   

The case for January 05, 2001 is a representative case of entire data set.  The results of 

the remainder of the cases can be found in the appropriate appendix.  The results are also 

summarized in table format in the conclusion section. 

First, a statistical analysis was conducted on the on the MODAS-TPX and 

MODAS-GFO fields (SS, temperature, and salinity) before the respective MODAS fields 

were input into WAPP.  The scatter plot (Figure27) for sound speed (SS) in the SCS on 

January 05, 2001 demonstrates a clustering around the mg mtSS SS= line.  The SS 

difference between MODAS-TPX and MODAS-GFO demonstrate a Gaussian-type 

distribution with a mean SS difference of -0.123 m/s and a standard deviation of 2.76 

m/s.  This result indicates that MODAS-GFO SS is generally faster than MODAS-TPX 

SS.  The RMSD of SS between MODAS-TPX and MODAS-GFO increases from 1m/s at 

the surface to maximum of 5 m/s at 170 m and then decreases to approximately 0 m/s at 

1000 m. 
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Figure 27.   SCS MODAS sound speed statistics for January 05, 2001.  Scatter plot 

MODAS-TPX vs MODA-GFO (a), Sound speed difference histogram (b), Sound 
speed bias (c), and sound speed RMDS (d). 

 

The horizontal difference in SS between MODAS-TPX and MODAS-GFO is 

depicted in both Figures 28 and 29.  Figure 28 depicts the horizontal difference at four 

depths (75m, 200m, 400m, and 600 m) in the SCS, and the red asterisks indicate the 

position of the SSPs in Figure 29.  Figure 29 is a plot of the SSPs for MODAS-TPX and 

MODAS-GFO at the indicated position for all depths.  For example, in Figures 29(d) and 

29(g), MODAS-TPX SSP is faster than MODAS-GFO, and Figure 28 indicates a positive 

horizontal difference in SSP for the respective positions of Figures 29(d) and 29(g).  The 

general shape of the SSP is the same for both MODAS-TPX and MODAS-GFO; 

however there is an offset in SSPs for MODAS-TPX and MODAS-GFO.   
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Figure 28.   SCS MODAS horizontal difference in SSPs for January 05, 2001.  The 

horizontal difference in SSP (m/s) between MODAS-GFO and MODAS-TPX is 
depicted at four depths (75m, 200m, 400m, and 600 m).  The red asterisk 

indicates position of SSP in Figure 29. 
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Figure 29.   SCS MODAS SSPs for January 05, 2001.  The MODAS-TPX SSP is red 

and MODAS-GFO is blue. The respective SSP is plotted in the position where 
there was a large positive or negative difference in SSP (red asterisks in Figure 

28). 
 

MODAS-TPX and MODAS-GFO SSPs had the largest difference in January 05, 

2001 in the SCS, and the difference between MODAS-TPX and MODAS-GFO SSPs 

continued to decrease through out the month of January 2001.  Figures 30 and 31 depict 

the horizontal difference is SS for January 30, 2001.  Both Figures 30 and 31 show that 

horizontal SS difference between MODAS-TPX and MODAS-GFO is decreasing for the 

SCS.  In fact, by inspection of the SSPs for January 05 (Figure 30) and January 30 

(Figure 31), the SSPs for MODAS-TPX and MODAS-GFO are converging. 
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Figure 30.   SCS MODAS horizontal difference in SSPs for January 30, 2001.  The 

horizontal difference in SSP (m/s) between MODAS-GFO and MODAS-TPX is 
depicted at four depths (75m, 200m, 400m, and 600 m).  The red asterisk 

indicates position of SSP in Figure 31. 
 
 

42 



 
Figure 31.   SCS MODAS SSPs for January 30, 2001.  The MODAS-TPX SSP is red 

and MODAS-GFO is blue. The respective SSP is plotted in the position where 
there was a large positive or negative difference in SSP (red asterisks in Figure 

30). 
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Figure 32.   SCS MODAS salinity statistics for January 05, 2001. Scatter plot 

MODAS-TPX vs MODA-GFO (a), salinity difference histogram (b), salinity bias 
(c), and salinity speed RMSD (d). 

 

The scatter plot for salinity (Figure 32) demonstrates a clustering around the 

line.  The errors for temperature demonstrate a Gaussian-type distribution with 

a mean salinity difference of 0.00114 psu and a standard deviation of 0.0244 psu.  This 

result indicates MODAS-GFO salinity is statically identical to the MODAS-TPX salinity.  

The RMSD of salinity between MODAS-GFO and MODAS-TPX increases from 0.02 

psu at the surface to maximum of 0.06 psu at 300 m and then decreases to 0.05 psu at 

1000 m. 

mg mtS S=
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Figure 33.   SCS MODAS temperature statistics for January 05, 2001.  Scatter plot 

MODAS-TPX vs MODA-GFO (a), temperature difference histogram (b), 
temperature bias (c), and temperature RMDS (d). 

 

The scatter plot for temperature (Figure 33) demonstrates a clustering around the 

line.  The errors for temperature demonstrate a Gaussian-type distribution with a 

mean temperature difference of 0.0248  and a standard deviation of 0.628 .  This 

result indicates MODAS-GFO temperature is warmer MODAS-TPX temperature.  The 

RMSD of temperature between MODAS-GFO and MODAS-TPX increases from 0.25  

at the surface to maximum of 1.25  at 200 m and then decreases to 0.20 at 1000 m. 

mg mtT T=

C C

C

C C

B. WAPP OUTPUT DIFFERENCE 
The MODAS-GFO and MODAS-TPX temperature and salinity fields were fed 

into WAPP.  WAPP then calculated the sound speed from the respective temperature and 

salinity grid point pairs from the respective MODAS fields.  The default values in WAPP 

for volume scattering strength and surface and bottom roughness/reflectivity were used 

for each tactical scenario.  Five different tactical scenarios were selected.  The tactical 

scenarios are selected using the Acoustic Preset GUI (Figure17).  The five tactical 
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scenario selected were high Doppler anti surface warfare (HD ASUW), low Doppler anti 

surface warfare (LD ASUW), low Doppler shallow anti submarine warfare (LD shallow 

ASW), high Doppler shallow anti submarine warfare (HD deep ASW), and low Doppler 

shallow anti submarine warfare (LD deep ASW).  Shallow ASW is defined as maximum 

target depth of 213 meters, and deep ASW is define as maximum target depth of 396 

meters (NUWC, 2005).  In other words, each of the 24 cases has 5 tactic scenarios (120 

tactic scenarios were analyzed), and each tactic scenario was comprised of over 14,000 

MODAS-TPX and MODAS-GFO grid point pairs. 

Second, WAPP outputs a ranked list-set of different SD/SA combination and 

acoustic coverage generated for the aforementioned tactical scenario for the respective 

MODAS-GFO and MODAS-TPX grid point pairs.  The same configuration management 

program used to evaluate POM and MODAS was employed to generate the list set.   

Finally, the relative difference was calculated using a statistical package, which 

produced absolute values of the relative differences (RD) in area coverage (AC) for the 

identical SD/SA combination generated by WAPP,  

 
AC AC

RD
AC
mg mt

mg

−
= . 

Here, the subscripts mg denotes MODAS-GFO and mt denotes MODAS-TPX.   

WAPP generated SD/SA combinations that were the same and some that were 

different.  The SD/SA combinations that were the same but had a different acoustic 

coverage were attributed to differences in the ocean’s environment (NUWC, 2005).  The 

SD/SA combinations that were different and had different acoustic coverage were 

attributed to differences in torpedo target motion analysis (TMA) and ballistics.  So, any 

differences in the output were attributed to differences in the input because all other 

parameters were constant (NUWC, 2005). 

Initially, it was assumed that a RD in acoustic coverage of 20% will significantly 

change the outcome of a tactical engagement.  Figure 34 depicts two cases where there is 

a 20 % difference of acoustic coverage in the torpedo acoustic cone (NUWC, 2005).  The 

two cases depicted in Figure 34 are a screen capture of torpedo engagement simulation in 
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MATLAB conduct by the Naval Undersea Warfare Command (NUWC, Newport).  Each 

dot is a probable contact and is red until the acoustic cone of the torpedo passes over the 

dot.  The dot turns yellow when the torpedo has a detection opportunity.  The torpedo 

then enters into its detection, acquisition, and verification phases.  If a dot remains in the 

acoustic cone long enough to complete the detection, acquisition, and verification phases, 

the torpedo will likely enter homing, a green dot.  

In the first case (Figure 34a), 94.2% of tracks enter the acoustic cone and 46.7% 

enter homing with an overall coverage score of 47.7 %.  In the second case (Figure 34b), 

when the acoustic coverage was reduce by 20%, 89.6% of tracks enter the acoustic cone 

and only 16.3% enter homing with an overall coverage score of 33.8%.  In other words, a 

relative difference greater than 20% leads to an engagement that is 1/3 as likely to lead to 

mission success.  So, a relative difference of 20% is large enough to change an 

engagement.  A speculative regression curve that is bound by the by first and second case 

infers that a RD of between 10 and 15 percent would yield an overall coverage score 

between 47.7% and 33.8%. 

 

  
Figure 34.   Horizontal acoustic coverage map. The two case depicted a typical 

acoustic cone for a torpedo (a) and an acoustic cone reduced by 20% (b).  A red 
indicates a probable contact.  A red dot turns yellow when the torpedo has a 
detection opportunity.  If a dot remains in the acoustic cone long enough to 
complete the detection, acquisition, and verification phases, the torpedo will 

likely enter homing, a green dot. 
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Data analysis proved that most the cases studied herein had a low probability that 

the RD is greater than 20%. A histogram of RD displays the number of same SD/SA 

combinations with area coverage relative differences in specified ranges, or bins, and the 

probabilities of RD being greater than 0.1 and 0.15  

 1 2Pr ob (RD 0.10),   Pr ob (RD 0.15)µ µ= > = > , 

are then used for the determination of the sensitivity.  

 
1.   WAPP Results 

The results for the 24 cases analyzed have the same general trend.  Similar to the 

results from Mancini, 2004, the ASUW scenarios had larger relative differences than the 

ASW scenarios.  Mancini found the probability values (RD) decrease with increasing 

tactic depth band.  In all scenarios, the probability values decreased with increasing tactic 

band; Figure 35 depicts that all three ASW scenarios have lower probability values than 

the ASUW scenarios for January 05, 2001. 
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Figure 35.   Probability curve SCS January 05,2001 

 

The histogram of the HD ASW scenario (Figure 36), lowest probability value, on 

January 05, 2001 had a mean RD of 4.60 with a standard deviation of 2.58, or the mean 
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value of the relative difference between the two acoustic coverages generated by 

MODAS-TPX and MODAS-GFO in the HD ASW scenario is 4.60%. The histogram HD 

ASUW (Figure 37), highest probability value, for January 05, 2001 has mean RD of 6.60 

with a standard deviation of 4.88  

 
Figure 36.   Wapp output for the relative difference between MODAS-TPX and 

MODAS-GFO for the HD deep ASW scenario.  Mean is 4.60, standard deviation 
is 2.58. 

 

 
Figure 37.   Wapp output for the relative difference between MODAS-TPX and 

MODAS-GFO for the HD ASUW scenario.  Mean is 6.60, standard deviation is 
4.88. 

 

The mean RD for all five tactical scenarios for January 2001 in the SCS (Figure 

38) and the ECS (Figure 39) are decreasing as function of time.  The mean RD for all 

cases in both the ECS and SCS are less than 6.60 % 
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Figure 38.   Mean RD in the SCS January 2001 

 
Mean RD ECS JAN 2001 (5 Scenarios)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

ECS 0105 ECS 0110 ECS 0115 ECS 0120 ECS 0125 SCS 0130 

Date

R
el

at
iv

e 
D

iff
er

en
ce

 HD Deep ASW
 LD Deep ASW
LD Shallow ASW
HD ASUWLD ASUW
LD ASUW

 
Figure 39.   Mean RD in the ECS January 2001 
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VIII. CONCLUSION 

The chief aim of this study was to determine the sensitivity of an USW system to 

altimeter orbit.  Two area of interest with high mesoscale variability were analyzed.  A 

key assumption of this study is that GFO has better spatial resolution than TPX; 

therefore, it was assumed that MODAS fields initialized with GFO sea surface heights 

are more accurate than MODAS fields initialized with TPX sea surface heights.  A 

second assumption is that greatest relative difference in acoustic coverage in WAPP will 

be in areas of high mesoscale variability. 

Both MODAS and POM were evaluated with observational data from SCSMEX.  

The availability of the SCSMEX evaluation of MODAS and POM provided an 

opportunity to test of the sensitivity of WAPP to the respective models.  POM 

outperformed MODAS in all five tactical scenarios (Table 3).  POM had smaller relative 

differences in acoustic coverage than MODAS.  The results make sense since POM is a 

physics based model that uses the primitive equation to forecast the sub-surface structure 

of the ocean; on the other hand, MODAS is a dynamic climatology which is a statistically 

based model.  The purpose of evaluating the sensitivity of both MODAS and POM in 

WAPP was to compare the relative difference between the respective model and ‘ground 

truth’ (SCSMEX observational data).  The sensitivity analysis of MODAS and POM also 

confirmed that probability values decrease with increasing tactic depth, in agreement with 

Mancini, 2004. 

Tables 4 and 5 are a summary of the sensitivities of the all the tactic scenarios in 

January for both the ECS and SCS.  In the 60 tactic scenarios in Tables 4 and 5, the mean 

RD for all tactic scenarios is less than 6.68 (SCS 0110 HD ASUW).  Furthermore, the 

probability that the RD is greater that 15 is less than 4.01% (SCS 0110 HD ASUW) for 

all 60 tactic scenarios in January, and the probability that the RD is greater that 10 is less 

than 17.01% for all 60 tactic scenarios in January. 
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  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
SCS 0105 HD Deep ASW 2.72 0.00            4.60 2.59 
SCS 0110 HD Deep ASW 3.04 0.08 4.87 2.73 
SCS 0115 HD Deep ASW 2.08 0.08 4.50 2.60 
SCS 0120 HD Deep ASW 0.56 0.00 4.16 2.25 
SCS 0125 HD Deep ASW 0.80 0.00 3.97 2.31 
SCS 0130 HD Deep ASW 0.32 0.00 3.86 2.10 
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
SCS 0105 LD Deep ASW 3.77 0.00 4.69 2.75 
SCS 0110 LD Deep ASW 3.69 0.08 4.81 2.87 
SCS 0115 LD Deep ASW 2.72 0.08 4.61 2.66 
SCS 0120 LD Deep ASW 1.28 0.08 4.44 2.46 
SCS 0125 LD Deep ASW 1.04 0.08 4.15 2.36 
SCS  0130 LD Deep ASW 0.88 0.00 4.14 2.29 
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
SCS 0105 LD Shallow ASW 6.01 0.24 5.23 3.30 
SCS 0110 LD Shallow ASW 5.85 0.32 5.28 3.21 
SCS 0115 LD Shallow ASW 3.77 0.32 5.11 3.05 
SCS 0120 LD Shallow ASW 2.16 0.16 4.60 2.71 
SCS 0125 LD Shallow ASW 2.88 0.24 4.37 2.81 
SCS  0130 LD Shallow ASW 3.37 0.24 4.59 2.87 
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
SCS 0105 HD ASUW 15.71 2.72 6.60 4.88 
SCS 0110 HD ASUW 15.63 4.01 6.68 5.19 
SCS 0115 HD ASUW 13.86 2.32 6.44 4.82 
SCS 0120 HD ASUW 10.74 0.80 5.79 4.14 
SCS 0125 HD ASUW 6.97 0.40 5.22 3.60 
SCS  0130 HD ASUW 7.77 0.48 5.51 3.52 
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
SCS 0105 LD ASUW 13.38 1.84 6.23 4.58 
SCS 0110 LD ASUW 13.06 0.96 6.22 4.18 
SCS 0115 LD ASUW 11.22 1.20 6.02 4.21 
SCS 0120 LD ASUW 7.45 0.80 5.23 3.67 
SCS 0125 LD ASUW 5.21 0.72 4.59 3.47 
SCS 0130 LD ASUW 4.49 0.80 4.73 3.47 
Table 4. WAPP output differences between GFO and TPX  for the SCS January 2001 
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  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
ECS 0105 HD Deep ASW 0.94 0.00 3.40 2.75
ECS 0110 HD Deep ASW 0.80 0.00 3.11 2.55
ECS 0115 HD Deep ASW 0.37 0.00 3.03 2.24
ECS 0120 HD Deep ASW 0.09 0.00 2.81 1.99
ECS 0125 HD Deep ASW 0.14 0.00 2.68 2.00
ECS 0130 HD Deep ASW 0.09 0.00 2.59 1.98
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
ECS 0105 LD Deep ASW 5.29 0.89 4.38 4.45
ECS 0110 LD Deep ASW 5.90 0.89 4.27 4.58
ECS 0115 LD Deep ASW 9.08 2.15 5.03 6.30
ECS 0120 LD Deep ASW 6.18 2.76 4.44 6.22
ECS 0125 LD Deep ASW 5.52 2.29 4.16 6.03
ECS 0130 LD Deep ASW 4.92 2.43 3.94 5.79
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
ECS 0105 LD Shallow ASW 5.81 0.84 4.71 4.68
ECS 0110 LD Shallow ASW 6.51 0.94 4.28 4.78
ECS 0115 LD Shallow ASW 9.97 2.15 5.08 6.47
ECS 0120 LD Shallow ASW 6.98 2.81 4.42 6.39
ECS 0125 LD Shallow ASW 6.23 2.29 4.16 6.18
ECS 0130 LD Shallow ASW 5.52 2.43 3.95 5.91
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
ECS 0105 HD ASUW 5.76 1.08 3.90 4.60
ECS 0110 HD ASUW 5.24 0.89 2.99 4.59
ECS 0115 HD ASUW 4.12 0.80 2.76 4.29
ECS 0120 HD ASUW 3.28 0.05 2.53 3.76
ECS 0125 HD ASUW 2.39 0.14 2.31 3.49
ECS 0130 HD ASUW 3.32 0.19 2.51 3.87
 
  Prob(RD>10) Prob(RD>15)    Mean RD            SD 
ECS 0105 LD ASUW 17.51 3.60 6.57 7.72
ECS 0110 LD ASUW 15.03 3.89 6.32 7.84
ECS 0115 LD ASUW 13.90 3.89 5.84 7.18
ECS 0120 LD ASUW 10.96 3.09 5.03 6.64
ECS 0125 LD ASUW 8.47 1.69 4.35 5.79
ECS 0130 LD ASUW 7.82 1.22 4.16 5.46

Table 5. WAPP output differences between GFO and TPX  for the ECS in January 2001 
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In conclusion, there is small probability(less than 18 %) that the RD is greater 10 

between MODAS-TPX and MODAS-GFO for all scenarios.  It appears that the USW 

weapon system is not overly sensitive to altimeter orbit.  That is not to say, that altimeter 

orbit is not important.  Jaing et al., 1996, showed that spatially dense altimeter sampling 

is preferred over temporal frequency sampling to resolve mesoscale features.  The 

resolving of mesoscale features in essential to the warfighter at the strategic level.  At 

strategic level, the warfighter is concerned with placement of assets, where to conduct 

operations, where the enemy submarine is hiding and so on.  The US Navy’s USW 

weapons is technological advance, so it appears that, in the case of different altimeter 

orbits, the USW weapon system is adequately robust to overcome the difference in 

between the two altimeters. 



APPENDIX A.  MODAS AND POM TACTICAL SCENARIO 
HISTOGRAMS 

 
Figure 40.   Wapp output for the relative difference between POM and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 
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Figure 41.   Wapp output for the relative difference between POM and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 
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Figure 44.   Wapp output for the relative difference between POM and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 

 

 
Figure 45.   Wapp output for the relative difference between POM and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 
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Figure 46.   Wapp output for the relative difference between POM and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 

 
Figure 47.   Wapp output for the relative difference between POM and SCSMEX 

(OBS) for HD deep ASW scenario.  Mean is 8.98, standard deviation is 2.95, 
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%. 
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APPENDIX B.  MODAS HORIZONTAL SSP DIFFERENCE 

 
Figure 48.   ECS MODAS horizontal difference in SSPs for January 10, 2001.   

 
Figure 49.   SCS MODAS horizontal difference in SSPs for January 10, 2001.   
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Figure 50.   ECS MODAS horizontal difference in SSPs for January 15, 2001.   

 

 
Figure 51.   SCS MODAS horizontal difference in SSPs for January 15, 2001.   
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Figure 52.   ECS MODAS horizontal difference in SSPs for January 20, 2001.   

 

 
Figure 53.   SCS MODAS horizontal difference in SSPs for January 20, 2001.   
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Figure 54.   ECS MODAS horizontal difference in SSPs for January 25, 2001.   

 

 
Figure 55.   SCS MODAS horizontal difference in SSPs for January 25, 2001.   
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Figure 56.   ECS MODAS horizontal difference in SSPs for January 30, 2001.   

 
 

 
 

Figure 57.   SCS MODAS horizontal difference in SSPs for January 30, 2001.   
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Figure 58.   ECS MODAS horizontal difference in SSPs for July 05, 2001.   

 

 
Figure 59.   SCS MODAS horizontal difference in SSPs for July 05, 2001.   
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Figure 60.   ECS MODAS horizontal difference in SSPs for July 10, 2001.   

 

 
Figure 61.   SCS MODAS horizontal difference in SSPs for July 10, 2001.   
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Figure 62.   ECS MODAS horizontal difference in SSPs for July 15, 2001.   

 

 
Figure 63.   SCS MODAS horizontal difference in SSPs for July 15, 2001.   
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Figure 64.   ECS MODAS horizontal difference in SSPs for July 20, 2001.   

 

 
Figure 65.   SCS MODAS horizontal difference in SSPs for July 20, 2001.   
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Figure 66.   ECS MODAS horizontal difference in SSPs for July 25, 2001.   

 
 

 
Figure 67.   SCS MODAS horizontal difference in SSPs for July 25, 2001.   
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Figure 68.   ECS MODAS horizontal difference in SSPs for July 30, 2001.   

 

 
 

Figure 69.   SCS MODAS horizontal difference in SSPs for July 30, 2001.   
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APPENDIX C.  MODAS SSP 

 
Figure 70.   SCS MODAS SSP January 10, 2001 
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Figure 71.   SCS MODAS SSP January 15, 2001 
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Figure 72.   SCS MODAS SSP January 20, 2001 
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Figure 73.   SCS MODAS SSP January 25, 2001 
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Figure 74.   SCS MODAS SSP January 30, 2001 
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Figure 75.   ECS MODAS SSP January 10, 2001 
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Figure 76.   ECS MODAS SSP January 15, 2001 
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Figure 77.   ECS MODAS SSP January 20, 2001 
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Figure 78.   ECS MODAS SSP January 25, 2001 
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Figure 79.   ECS MODAS SSP January 30, 2001 
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Figure 80.   SCS MODAS SSP July 05, 2001 
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Figure 81.   SCS MODAS SSP July 10, 2001 
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Figure 82.   SCS MODAS SSP July 15, 2001 
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Figure 83.   SCS MODAS SSP July 20, 2001 
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Figure 84.   SCS MODAS SSP July 25, 2001 
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Figure 85.   SCS MODAS SSP July 30, 2001 
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Figure 86.   ECS MODAS SSP July 05, 2001 
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Figure 87.   ECS MODAS SSP July 10, 2001 

 

 

88 



 
Figure 88.   ECS MODAS SSP July 15, 2001 
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Figure 89.   ECS MODAS SSP July 20, 2001 
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Figure 90.   ECS MODAS SSP July 25, 2001 
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Figure 91.   ECS MODAS SSP July 30, 2001 
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APPENDIX D.  MODAS INPUT STATISTICS 

 
Figure 92.   SCS MODAS sound speed January 10, 2001 
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Figure 93.   SCS MODAS temperature January 10, 2001 

 
Figure 94.   SCS MODAS salinity January 10, 2001 
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Figure 95.   SCS MODAS sound speed January 15, 2001 

 
Figure 96.   SCS MODAS temperature January 15, 2001 
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Figure 97.   SCS MODAS salinity January 15, 2001 

 
Figure 98.   SCS MODAS sound speed January 20, 2001 
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Figure 99.   SCS MODAS temperature January 20, 2001 

 
Figure 100.   SCS MODAS salinity January 20, 2001 
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Figure 101.   SCS MODAS sound speed January 25, 2001 

 
Figure 102.   SCS MODAS temperature January 25, 2001 
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Figure 103.   SCS MODAS salinity January 25, 2001 

 
Figure 104.   SCS MODAS sound speed January 30, 2001 
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Figure 105.   SCS MODAS temperature January 30, 2001 
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Figure 106.   SCS MODAS salinity January 30, 2001 



 
Figure 107.   ECS MODAS sound speed January 05, 2001 

 
Figure 108.   ECS MODAS temperature January 05, 2001 
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Figure 109.   ECS MODAS salinity January 05, 2001 

 
Figure 110.   ECS MODAS sound speed January 10, 2001 
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Figure 111.   ECS MODAS temperature January 10, 2001 

 
Figure 112.   ECS MODAS salinity January 10, 2001 
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Figure 113.   ECS MODAS sound speed January 15, 2001 

 
Figure 114.   ECS MODAS temperature January 15, 2001 
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Figure 115.   ECS MODAS salinity January 15, 2001 

 
Figure 116.   ECS MODAS sound speed January 20, 2001 

105 



 
Figure 117.   ECS MODAS temperature January 20, 2001 

 
Figure 118.   ECS MODAS salinity January 20, 2001 
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Figure 119.   ECS MODAS sound speed January 25, 2001 

 
Figure 120.   ECS MODAS temperature January 25, 2001 

107 



 
Figure 121.   ECS MODAS salinity January 25, 2001 

 
Figure 122.   ECS MODAS sound speed January 30, 2001 
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Figure 123.   ECS MODAS temperature January 30, 2001 

 
Figure 124.   ECS MODAS salinity January 30, 2001 
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Figure 125.   SCS MODAS sound speed July 05, 2001 

  
Figure 126.   SCS MODAS temperature  July 05, 2001 
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Figure 127.   SCS MODAS salinity July 05, 2001 

 
Figure 128.   SCS MODAS sound speed July 10, 2001 
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Figure 130.   SCS MODAS salinity July 10, 2001 

 
Figure 129.   SCS MODAS temperature July 10, 2001 



 
Figure 131.   SCS MODAS sound speed July 15, 2001 

 
Figure 132.   SCS MODAS temperature July 15, 2001 
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Figure 133.   SCS MODAS salinity July 15, 2001 

 
Figure 134.   SCS MODAS sound speed July 20, 2001 
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Figure 135.   SCS MODAS temperature July 20, 2001 

  
Figure 136.   SCS MODAS salinity July 20, 2001 
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Figure 137.   SCS MODAS sound speed July 25, 2001 

 
Figure 138.   SCS MODAS temperature July 25, 2001 
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Figure 139.   SCS MODAS salinity July 25, 2001 

 
Figure 140.   SCS MODAS sound speed July 30, 2001 
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Figure 141.   SCS MODAS temperature July 30, 2001 

 
  

Figure 142.   SCS MODAS salinity July 30, 2001 
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Figure 143.   ECS MODAS sound speed July 05, 2001 

 
Figure 144.   ECS MODAS temperature July 05, 2001 
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Figure 145.   ECS MODAS salinity July 05, 2001 

 
Figure 146.   ECS MODAS sound speed July 10, 2001 
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Figure 147.   ECS MODAS temperature July 10, 2001 

 

 
Figure 148.   ECS MODAS salinity July 10, 2001 
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Figure 149.   ECS MODAS sound speed July 15, 2001 

 
Figure 150.   ECS MODAS temperature July 15, 2001 
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Figure 151.   ECS MODAS salinity July 15, 2001 

 
Figure 152.   ECS MODAS sound speed July 20, 2001 
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Figure 153.   ECS MODAS temperature July 20, 2001 

 
Figure 154.   ECS MODAS salinity July 20, 2001 
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Figure 155.   ECS MODAS sound speed July 25, 2001 

 
Figure 156.   ECS MODAS temperature July 25, 2001 
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Figure 157.   ECS MODAS salinity July 25, 2001 

 
Figure 158.   ECS MODAS sound speed July 30, 2001 
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Figure 159.   ECS MODAS temperature July 30, 2001 

 
Figure 160.   ECS MODAS salinity July 30, 2001 
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APPENDIX E.  JULY WAPP OUT SENSITIVITY SUMMARY 

  RD>10 RD>15 Mean SD 
SCS 0705 HD Deep ASW 0.962 0.080 3.964 3.055
SCS 0710 HD Deep ASW 1.282 0.000 4.130 3.172
SCS 0715 HD Deep ASW 1.362 0.000 3.929 3.185
SCS 0720 HD Deep ASW 0.721 0.000 3.753 2.939
SCS 0725 HD Deep ASW 0.642 0.000 3.748 2.903
SCS 0730 HD Deep ASW 1.122 0.000 3.928 2.922
          
  RD>10 RD>15 Mean SD 
SCS 0705 LD Deep ASW 1.202 0.000 4.143 3.151
SCS 0710 LD Deep ASW 1.282 0.000 4.226 3.226
SCS 0715 LD Deep ASW 1.442 0.000 4.187 3.349
SCS 0720 LD Deep ASW 1.282 0.000 3.993 3.264
SCS 0725 LD Deep ASW 0.802 0.000 3.957 3.039
SCS 0730 LD Deep ASW 1.683 0.000 4.100 3.106
          
  RD>10 RD>15 Mean SD 
SCS 0705 LD Shallow ASW 6.571 0.321 4.896 4.440
SCS 0710 LD Shallow ASW 6.891 0.160 4.979 4.475
SCS 0715 LD Shallow ASW 4.728 0.240 4.674 4.162
SCS 0720 LD Shallow ASW 4.247 0.401 4.348 4.066
SCS 0725 LD Shallow ASW 6.576 0.241 4.855 4.394
SCS 0730 LD Shallow ASW 3.606 0.000 4.599 3.840
          
  RD>10 RD>15 Mean SD 
SCS 0705 HD ASUW 12.500 1.522 5.640 5.776
SCS 0710 HD ASUW 22.676 2.724 7.458 7.418
SCS 0715 HD ASUW 27.083 3.205 7.831 7.647
SCS 0720 HD ASUW 17.628 2.163 5.900 6.898
SCS 0725 HD ASUW 7.298 0.080 4.141 4.310
SCS 0730- HD ASUW 8.333 0.881 4.789 4.816
          
  RD>10 RD>15 Mean SD 
SCS 0705 LD ASUW 8.013 1.923 4.951 5.855
SCS 0710 LD ASUW 9.535 1.683 5.550 6.042
SCS 0715 LD ASUW 12.580 2.644 6.034 6.719
SCS 0720 LD ASUW 9.054 2.083 5.049 5.848
SCS 0725 LD ASUW 5.373 1.203 4.367 4.866
SCS 0730 LD ASUW 6.490 1.282 4.773 5.036

Table 6. WAPP sensitivity summary for the SCS July 2001 
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  RD>10 RD>15 Mean SD 
ECS 0705 HD Deep ASW 0.609 0.000 2.432 3.131 
ECS 0710 HD Deep ASW 0.702 0.000 2.320 3.030 
ECS 0715 HD Deep ASW 0.890 0.000 2.450 3.156 
ECS 0720 HD Deep ASW 0.890 0.000 2.495 3.166 
ECS 0725 HD Deep ASW 1.358 0.000 2.566 3.388 
ECS 0730 HD Deep ASW 1.592 0.000 2.756 3.580 
          
  RD>10 RD>15 Mean SD 
ECS 0705 LD Deep ASW 0.702 0.047 2.565 3.242 
ECS 0710 LD Deep ASW 0.655 0.094 2.428 3.205 
ECS 0715 LD Deep ASW 1.264 0.094 2.707 3.501 
ECS 0720 LD Deep ASW 1.124 0.140 2.673 3.508 
ECS 0725 LD Deep ASW 1.358 0.047 2.735 3.502 
ECS 0730 LD Deep ASW 1.217 0.000 2.869 3.572 
          
  RD>10 RD>15 Mean SD 
ECS 0705 LD Shallow ASW 2.809 0.562 3.136 4.316 
ECS 0710 LD Shallow ASW 1.919 0.187 2.909 3.888 
ECS 0715 LD Shallow ASW 2.622 0.234 3.088 4.071 
ECS 0720 LD Shallow ASW 3.277 0.281 3.258 4.320 
ECS 0725 LD Shallow ASW 3.324 0.375 3.374 4.362 
          
  RD>10 RD>15 Mean SD 
ECS 0705 HD ASUW 11.096 2.856 4.407 6.680 
ECS 0710 HD ASUW 10.908 3.792 4.427 7.353 
ECS 0715 HD ASUW 12.079 3.652 4.585 7.281 
ECS 0720 HD ASUW 12.406 3.277 4.685 7.362 
ECS 0725 HD ASUW 15.403 4.120 5.264 7.745 
ECS 0730 HD ASUW 16.854 4.728 5.719 8.061 
          
  RD>10 RD>15 Mean SD 
ECS 0705 LD ASUW 11.470 7.163 5.241 9.402 
ECS 0710 LD ASUW 13.062 7.116 5.178 9.530 
ECS 0715 LD ASUW 12.266 7.116 5.232 9.362 
ECS 0720 LD ASUW 13.764 6.039 5.226 8.955 
ECS 0725 LD ASUW 15.543 7.350 5.798 9.715 
ECS 0730 LD ASUW 16.339 7.678 6.157 9.933 

Table 7. WAPP sensitivity summary for the ECS July 2001 
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